Synergetic material and structure optimization yields robust spider web anchorages.
نویسندگان
چکیده
Millions of years of evolution have adapted spider webs to achieve a range of properties, including the well-known capture of prey, with efficient use of materials. One feature that remains poorly understood is the attachment disc, a network of silk fibers that mechanically anchors a web to its environment. Experimental observations suggest that one possible attachment disc adheres to a substrate through multiple symmetrically branched structures composed of sub-micrometer scale silk fibers. Here, a theoretical model is used to explore the adaptation of the strength of attachment of such an anchorage, and complementary mesoscale simulations are applied to demonstrate a novel mechanism of synergetic material and structural optimization, such that the maximum anchorage strength can be achieved regardless of the initial anchor placement or material type. The optimal delamination (peeling) angle is facilitated by the inherent extensibility of silk, and is attained automatically during the process of delamination. This concept of self-optimizing peeling angle suggests that attachment discs do not require precise placement by the spider, irrespective of adhesion strength. Additional hierarchical branching of the anchorage increases efficiency, where both the delamination force and toughness modulus increase with a splitting of the cross-sectional area.
منابع مشابه
Numerical implementation of multiple peeling theory and its application to spider web anchorages.
Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitr...
متن کاملThe RBSE Spider - Balancing Effective Search Against Web Load
The design of a Web spider entails many things, including a concern for reasonable behavior, as well as more technical concerns. The RBSE Spider is a mechanism for exploring World Wide Web structure and indexing useful material thereby discovered. We relate our experience in constructing and operating this spider.
متن کاملThe RBSE Spider - Balancing Effective Search Against Web Load1
The design of a Web spider entails many things, including a concern for reasonable behavior, as well as more technical concerns. The RBSE Spider is a mechanism for exploring World Wide Web structure and indexing useful material thereby discovered. We relate our experience in constructing and operating this spider.
متن کاملSTRUCTURAL DAMAGE DETECTION BY USING TOPOLOGY OPTIMIZATION FOR PLANE STRESS PROBLEMS
This paper aims to introduce topology optimization as a robust tool for damage detection in plane stress structures. Two objective functions based on natural frequencies and shape modes of the structure are defined to minimize discrepancy between dynamic specifications of the real damaged structure and the updating model. Damage area is assumed as a porous material where amount of porosity sign...
متن کاملSpider ' s Orb Web : Implications of Structural Hierarchies to Materials - based Evolution by Anna
Among a myriad of spider web geometries, the orb web presents a fascinating, exquisite example in architecture and evolution. Its structural component, the silk protein, is an exemplary natural material because its superior properties stem intrinsically from the synergistic cooperativity of hierarchically-organized components, rather than from the particular properties of the building blocks th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 9 16 شماره
صفحات -
تاریخ انتشار 2013